Center-Crossing Recurrent Neural Networks for the Evolution of Rhythmic Behavior
نویسندگان
چکیده
A center-crossing recurrent neural network is one in which the null-(hyper)surfaces of each neuron intersect at their exact centers of symmetry, ensuring that each neuron's activation function is centered over the range of net inputs that it receives. We demonstrate that relative to a random initial population, seeding the initial population of an evolutionary search with center-crossing networks significantly improves both the frequency and the speed with which high-fitness oscillatory circuits evolve on a simple walking task. The improvement is especially striking at low mutation variances. Our results suggest that seeding with center-crossing networks may often be beneficial, since a wider range of dynamics is more likely to be easily accessible from a population of center-crossing networks than from a population of random networks.
منابع مشابه
An Evaluation of Center-Crossing Recurrent Neural Networks for the Evolution of Rhythmic Behavior
A center-crossing recurrent neural network is one in which the null-(hyper)surfaces of each neuron intersect at their exact centers of symmetry, ensuring that each neuron’s activation function is centered over the range of net inputs that it receives. We demonstrate that, relative to a random initial population, seeding the initial population of an evolutionary search with centercrossing networ...
متن کاملEvolution of adaptive center-crossing continuous time recurrent neural networks for biped robot control
We used simulated evolution to obtain continuous time recurrent neural networks to control the locomotion of simulated bipeds. We also used the definition of center-crossing networks, so that the recurrent networks nodes can reach their areas of maximum sensitivity of their activation functions. Moreover, we incorporated a run-time adaptation of the nodes' biases to obtain such condition. We te...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2002